
Fulfilling Industrial Needs for Consistency Among
Engineering Artifacts

Luciano Marchezan
Inst. of Software Systems Engineering

Johannes Kepler University Linz
Linz, Austria

Wesley K. G. Assunção
Inst. of Software Systems Engineering

Johannes Kepler University Linz
Linz, Austria

Edvin Herac
Inst. of Software Systems Engineering

Johannes Kepler University Linz
Linz, Austria

Felix Keplinger
Inst. of Software Systems Engineering

Johannes Kepler University Linz
Linz, Austria

Alexander Egyed
Inst. of Software Systems Engineering

Johannes Kepler University Linz
Linz, Austria

Christophe Lauwerys
Corelab MotionS

Flanders Make
Belgium

Abstract—Maintaining the consistency of engineering artifacts
is a challenge faced by several engineering companies. This is
more evident when the engineering artifacts are created using
different tools and have different formats. This is the context of
a company that builds agricultural machines, where components
are developed using a decentralized iterative process. In this
study, we present an approach developed in collaboration with an
industry partner to address the issues and requirements of a real
engineering scenario. These issues include the manual execution
of consistency checking, without guidelines that formalize the
activity. Furthermore, the industry partner aims at a flexible
solution that can be applied without disrupting the current
development process significantly. The proposed approach ap-
plies consistency rules (CR) defined to automatically detect and
provide inconsistency feedback to engineers in real-time. The
approach presented in this work also allows the customization
of the CRs, giving flexibility to how the consistency checking is
applied. The feasibility of our approach is demonstrated in such
an industrial scenario, with a discussion about how the issues
were addressed and the limitations of the current solution. We
also perform a scalability evaluation showing that the approach
can be applied in large systems (up to 21,061 elements) in a
reasonable amount of time, taking less than 0.25 milliseconds to
apply a CR, in the worst cases.

Index Terms—Model-Driven Engineering, Consistency check-
ing, Trace generation, Consistency flexibility

I. INTRODUCTION

Consistency checking is widely used in companies to find
inconsistencies in engineering artifacts [1]. Benefits of con-
sistency checking include improving the quality of artifacts,
reducing the chance of requirements not being met by design
or implementation, as well as ensuring the safety of the
system [2]. To achieve these goals, consistency checking
approaches apply different strategies, commonly for checking
the consistency of UML models [3]–[8]. Due to the importance
and benefits of the consistency checking activity, research in
the field has expanded beyond models, dealing with different
artifacts [2]. These approaches allow companies to check the
consistency of artifacts created with different tools [9]–[11]
which is important since most companies rely on different
types of engineering artifacts [12].

This is the case for a company that builds agricultural
machines, a partner in this study, where software and hardware
components must be developed and maintained until the
machine development process is finished. Flanders Make, a
research center that acts in Belgium’s manufacturing indus-
try, collaborates with this company to address their issues
regarding consistency checking (Section II). These issues
include the consistency checking being performed manually,
possibly leading to errors. Also, the company relies only
on the knowledge of engineers for checking the consistency
among the artifacts. Since the engineers responsible for the
consistency checking may change, e.g., leaving the company,
this process can lead to different results. Lastly, the company
requires flexibility regarding the consistency checking process
due to its decentralized development process, where engineers
have different preferences and work from different locations.

In this work, we present an approach (Section III) designed
to solve these issues, as well as to conform to specific
technological requirements such as being executed in the tools
used by this company. Our approach supports the definition
of consistency rules (CR) that can be used to automatically
detect inconsistencies between two or more engineering arti-
facts. Relationships between artifacts from different tools are
created by generating trace links that connect two properties
of different artifact types, e.g., UML models and source code.
The CRs provided with our approach automate the way that
the consistency checking is applied, being always the same
independently of who is applying the approach. Furthermore,
the approach is flexible, allowing the modification, creation,
and deletion of CRs at runtime.

We demonstrate the approach’s feasibility in the industrial
scenario, discussing how we address the scenario’s issues
(Contribution 1) and how challenges and limitations impacted
the solution (Contribution 2). We also present an empirical
scalability evaluation demonstrating how the approach handles
the consistency checking between Java source code and UML
models (Contribution 3). This evaluation (Section IV) is per-
formed using 28 CRs that check for inconsistencies between

both artifact types in six real systems. Results show that the
approach can be applied in a variety of systems ranging in their
size from 7,613 to 21,061 elements. The application of CRs
is performed within a reasonable amount of time as each CR
is executed in less than 0.25 milliseconds, in the worst cases.
Related work is presented in Section V and conclusions in
Section VI.

II. BACKGROUND

In this study, we collaborate with Flanders Make,1 a re-
search center acting in the Belgium manufacturing industry.
Flanders Make contributes to the technological development
of vehicles, machines, and factories, providing services to
multinational companies. The problem investigated in this
study originates from one of Flanders Makes collaborations
with a company that builds agricultural machines composed of
sensors, actuators, engines, and other hardware components.
The machines also contain software components and inter-
faces describing their communication. The systems of these
machines can have between 10 and 15 components (depending
on the configuration desired). This company has several teams
with engineers responsible for multiple components in their
domains, including hydraulics, mechanics, and software. Each
team has from 10 to 50 engineers, depending on the number
of components that they are responsible for.

The communication between the system components is
performed through the Robot Operating System (ROS) pro-
tocol [13]. ROS provides a set of software libraries and
tools for building applications with an anonymous publish/sub-
scribe service that allows message exchange between different
ROS processes. ROS uses the Interface Description Language
(IDL) [14] for message definition and serialization. In this
study, Flanders Make collaborates with our institute to com-
bine their experience and provide a solution for the agriculture
company problem. The results aim at being beneficial to
the industry partner, as well as serve as a case study for
the application of research technologies from academia in
an industrial context. Flanders makes provided an industrial
scenario that illustrates the development process of agricultural
machines and their components.

A. Industrial Scenario

The incremental development process of the agricultural
machines is illustrated in Figure 1. The company follows a
decentralized process where different teams of engineers work
on various components for the same machine (Figure 1 depicts
the process from the perspective of one team). The process
presented in this study is a simplified version of their real
process. Furthermore, our collaboration with them is focused
on addressing issues that happen during the Design and
the Development steps. During the Design step, one or
more engineers from the team are responsible for modeling
the components using UML models. These models express the
structure and the communication of the software and hardware
components.

1Flanders Make website: https://www.flandersmake.be

Requirements Engineering

Design Development
Hardware

Component

Software
 Component

Assemble and Deploy

IDL
implements

UML

Teamuses

and

updates

Fig. 1: Development process of agricultural machines.

One example of UML model is illustrated in the middle
part of Figure 2. Here, two components (Perception and
Control) are being designed. These components exchange
messages using two interfaces, represented as the interfaces
VehicleConfig and Obstacle, describing how the com-
munication of these components should be implemented. The
company uses Microsoft Visio to create UML models. The
interfaces are also defined as IDL messages (top part of
Figure 2) which are a textual representation of the UML
interfaces and are used by ROS to realize the communication
of software and hardware components. For instance, they allow
the mapping of the components designed to different object-
oriented programming languages, such as C++ and Python.

As illustrated in Figure 1, the UML models and the
IDL messages from the Design step are used and updated
by the engineers when implementing components in the
Development step. Since engineers have different prefer-
ences when implementing the components, they can rely either
on the IDL messages or on the UML models. Thus, the UML
models and the IDL messages must be consistent with each
other. In the current context of the company, however, the
consistency of these artifacts is performed manually (Issue 1).
This issue is represented by the must be consistent
connection between the IDL messages and the UML models
at the top part of Figure 2.

Considering the manual process of fixing inconsistencies,
if an engineer identifies an inconsistency, e.g., an interface
property defined in the UML model which does not exist in
the IDL definition, this inconsistency must be fixed. This leads
to a problem since the identification of the inconsistency at
this point relies completely on the engineer’s knowledge, being
an error-prone activity (Issue 2). Such inconsistencies, if not
fixed, lead to rework, as errors will emerge later, e.g., during
the integration of components of different teams. Furthermore,
as illustrated by Figure 1, the Design and Development
steps are concurrently performed. This means that changes in
the system components can happen either in the UML models,
the IDL messages, or the source code.

https://www.flandersmake.be

<<Interface>>

VehicleConfig

std_msgs/Double height
Actuator[] actuators

Perception

Control

<<Interface>>

Obstacle

std_msgs/int type
Obstacle[] obstacles

code must conform to

interface and message

VehicleConfig.msg

IDL

Obstacle.msg

IDL

ID
L

M
es

sa
ge

s
U

M
L

So
ur

ce
 C

od
e

must be consistent must be consistent

code must conform to

interface and message

Fig. 2: Engineering artifacts and their intended relationships.

Note that the source code of the software components has
no direct connection to the UML models or the IDL messages,
e.g., traceability. Hence, if the structure of a component
changes in the source code, the UML model has to be manu-
ally updated. At this moment, if an engineer decides to change
the design of a component, then the source code becomes
inconsistent and must be updated (Issues 1 and 2). These
issues are illustrated by the relation code must conform
to interface and message, between IDL messages,
UML models, and the source code. Once again, this process
is currently performed manually, being error-prone.

Moreover, there are cases where the implementation of
source code based on the UML model (and vice-versa)
may be ambiguous. This is more evident when components
modeled in UML can be implemented in different program-
ming languages, which is the case of agricultural machines.
Since each language can have its data structures and prim-
itive types, the way of checking the consistency between
the source code and the models may change. For instance,
the collection actuators defined in the UML interface
VehicleConfig is implemented as a Set in the source
code of class VehicleConfig (bottom part of Figure 2).
Another example is the collection obstacles that describes
the possible obstacles in a route of an agriculture machine.
This collection is implemented in the source code as a List
instead of a Set. In each case, the consistency checking should
be applied differently, allowing engineers to customize the
checking mechanism. Hence, engineers must have flexibility
concerning how consistency checking can be applied(Issue 3).

The three issues led us to define the goals of this study,
which are related to the requirements of the industry partner
regarding a possible solution.

B. Goals and Requirements

To address the aforementioned issues, we define the goals
of a possible solution as: i) automatically detecting incon-
sistencies based on consistency rules (Issue 1); ii) increasing
awareness about consistency between engineering artifacts (Is-
sue 2); iii) allowing the definition of customizable consistency
mechanisms between engineering artifacts (Issue 3).

Our industry partner also defined requirements that the
solution must address. Firstly, they require that consistency
checking can be performed in real-time on Microsoft Vi-
sio. The second requirement is allowing the use of GitHub
repositories to connect the IDL message definitions and the
source code implemented to the UML models from Visio.
Considering the source code, for demonstration purposes we
agree on providing support for Java, although the company
uses mostly C++ and Python. The main reason is that we
have already some results regarding how Java source code
can be checked for consistency [15], [16]. Additionally, the
current workflow of the development process must not be
disrupted significantly, i.e., the current engineering tools and
artifact types should not be replaced. Moreover, engineers
may choose to design the models and implement the source
code from different perspectives, e.g., looking first at the IDL
messages, or first creating the source code and then updating
the models. Hence, the solution must not be intrusive. Thus,
we avoid relying on code generation since it could impact
the development process workflow, which is not desired by
the industry partner. In the following section, we describe an
approach applied as the solution to address these goals and
requirements.

III. APPROACH’S REALIZATION

In this section, we describe the main definitions of our
approach and its overall workflow.

A. Approach’s Unique Representation

To check for the consistency of different types of artifacts,
we need to compare their properties and values. To achieve
this, we define a unique representation that is illustrated by the
UML class diagram presented in Figure 3. In this unique rep-
resentation, a model consists of model elements, which
contain properties. A property has one value or multiple
values (collections). Model, model elements, and properties
have types based on the metamodel of the artifacts being
represented. This relationship is illustrated at the metamodel
level, at the top part of Figure 3. Using this definition, the
interface Obstacle from Figure 2 is a model element of
the type interface with properties such as a name (of the type
String) with a value equals to “Obstacle” and the collection
called obstacles. The source code can also be represented
using this definition.

The class VehicleConfig (bottom part of Figure 2) has
properties such as the fields height and actuators of
the types Double and Set, respectively. Model elements of
different model types can be connected using trace links.

ConsistencyRule

Model Model Element
1 1..*

Property

Value

1 1..*

0..*

1..*

ConsistencyRule

Evaluation

0..*

0..*

ModelType
Model

ElementType PropertyType
1
1..*

1
1..*

1
1..*

M
et

am
od

el
M

od
el

trace link
0..*1

Fig. 3: UML class diagram of the unique representation used
by our approach.

CR 1 All properties of a UML interface must be implemented
as fields in the source code.

c o n t e x t UML i n t e r f a c e inv :
s e l f . l i n k e d S o u r c e C o d e . t r a c e s −> f o r A l l (s o u r c e C o d e C l a s s : <

SourceCodeClass> | s e l f . o w n e d P r o p e r t i e s −> f o r A l l (
u m l P r o p e r t y : <UMLProperty> | s o u r c e C o d e C l a s s . f i e l d s −>

e x i s t s (f i e l d : <F i e l d> | f i e l d . name = u m l P r o p e r t y .
name)))

Trace links are represented by the relation one-to-many that
model elements have with themselves (center of Figure 3).
Traces links are important for our approach as they allow
us to perform consistency checking considering artifacts from
different model types, i.e., originating from different tools such
as Visio and Github.

To check the consistency of the model elements, the ap-
proaches apply consistency rules (CR) which are con-
ditions that model elements must fulfill. A CR is written for a
context, which is a model element type (see Consistency Rule
in Figure 3). An example of CR is given in CR1 where the rule
checks if all properties of a UML interface are implemented
in the source code as fields. Note that the definition is based
on the language used for creating the CRs. In our case, we
use the Abstract Rule Language (ARL).2 ARL is based on
OCL [17] with minor differences, e.g., instead of having
“OCLAsType” the ARL language has “asType” expression.
Continuing on the definition of CR1, the rule iterates over
all trace links from the UML interface to the source code.
The CR uses a universal quantifier (forAll) to check if all
traces of source code conform to the CR. It checks if, for
all UML properties, there is at least one (exists quantifier)
field implemented with the same name as the given property.
When a CR is applied to a model element, a consistency
rule evaluation (CRE) is created. Hence, the asso-
ciative class ConsistencyRuleEvaluation connecting
ModelElement and ConsistencyRule in Figure 3. A
CRE evaluates to a Boolean value, true (consistent) or false
(inconsistent). Details about the approach are described in the
following section.

2Language documentation is available at https://isse.jku.at/designspace/
index.php/Abstract Rule Language

A. Preparation

1. Connect Tools

Artifact

Design

Space

2. Generate Trace Links

Artifact

analyzes

B. Consistency Checking

triggers

1. Define Consistency Rules

triggers

2. Change Artifacts

3. Perform Consistency Checking

Artifact

analyzes analyzes

!
inconsistencies

changes

Artifact

Artifact

Artifact

Artifact

Artifact

connected

Engineer

Trace

Service

Consistency

Service

connected

analyzes

CR1

CR2

Class

Message

MethodCR3

Traces

generates

Tool 1

Tool 2

Fig. 4: Overview of the approach’s workflow.

B. Approach’s Workflow

Our approach’s workflow, illustrated in Figure 4, is divided
into two phases, namely Preparation and Consistency
Checking.

1) Preparation: During the A.Preparation phase (Fig-
ure 4) the tools from which artifacts are created must be
accessible to the consistency checking service, also trace links
between artifacts are generated using the trace service.

Connect Tools: to support multiple types of artifacts, these
need to be accessible to the trace and consistency checking
services. This is achieved by connecting the engineering tools
(see Step A1 in Figure 4), e.g., Microsoft Visio, to the
DesignSpace server [18] where the services are running.3 We
decided to use the DesignSpace server for establishing the
connection of these artifacts as it provides an easily extensible
infrastructure. For instance, we implement and use the trace
and consistency checking services that are running in the
DesignSpace server. Figure 5 illustrates a simplified version of
the DesignSpace architecture [11], [18]. Services such as the
trace (Step A2) and consistency (Steps B1, B2, and
B3) are running on the server. Tools can be connected to
the server through the use of tool adapters, that send and
receive artifacts’ information used by the services to achieve
different goals, such as to check for consistency. To address
the requirements of the industry partner, we developed tool
adapters as plugins for connecting Visio, GitHub, and IntelliJ
to the DesignSpace server.

3Video demos demonstrating this connection are available at our online
repository [19]

https://isse.jku.at/designspace/index.php/Abstract_Rule_Language
https://isse.jku.at/designspace/index.php/Abstract_Rule_Language

DesignSpace

Se
rv

ic
es Trace

Consistency

Tool 1 Tool 2 Tool n

Adapter 1 Adapter 2 Adapter n

Fig. 5: The architecture of the DesignSpace server.

Tool adapters are responsible for performing the com-
munication between the tools and the DesignSpace server
(Figure 5). For instance, the Visio tool adapter reads the shapes
designed in Visio using UML elements and transforms them
using the unique representation (Figure 3). This is achieved
by the use of a specific parser that identifies the Visio shapes
corresponding to UML elements and instantiates them into
DesignSpace as model elements with properties and values
from the unique representation. Similarly, the tool adapter
for GitHub reads the textual files present in the repository
to which DesignSpace is connected. This repository is set
by the engineers in a configuration file and once connected,
DesignSpace fetches the files. If a file has an .msg extension,
which means it is an IDL file written for ROS, a parser is used
to transform this .msg using the unique representation.

The IntelliJ adapter also has a parser that transforms the
elements from the .java files into instances of the unique rep-
resentation. This adapter uses a Java-specific metamodel that
defines classes, methods, and fields, among other properties of
the Java programming language that can be analyzed during
the consistency checking by applying CRs. These steps can be
replicated in other tools, such as by parsing .java files directly
from GitHub or other IDEs to create Java-like elements within
the DesignSpace server.

Generate Trace Links: the generation of trace links (Step
A2, Figure 4) is semi-automated and it is based on two
decisions from the engineer. The first decision is related to
which model element types can have traceability. For example,
the engineer may decide that UML interfaces should be traced
to IDL message definitions. The second decision is related to
which model elements, of the model element type selected,
should be traced. Our approach aids this decision by providing
a trace service with an automatic tracing generator. This trac-
ing generator can be customized for different contexts. In this
work, we use the generator based on artifact names. Since the
agriculture company also relies on naming for comparing IDL
message definitions to UML interfaces, this strategy fits their
context. Thus, if two model elements have the corresponding
types that need to be traced, e.g., UML interface and IDL
message, and the same name, the approach automatically
creates a trace between them. We provide, however, a way
of extending the trace service to other contexts as engineers
can modify the auto-generated traces, create, or delete traces.

CR 2 All properties of a UML interface must be represented
as fields in the IDL messages.

c o n t e x t UML i n t e r f a c e inv :
s e l f . l i nkedIDLMessages . t r a c e s −> f o r A l l (i d l M e s s a g e : <

IDLMessage> | i d l M e s s a g e . f i e l d s −>f o r A l l (i d l F i e l d : <
IDLFie ld> | s e l f . p r o p e r t i e s −> e x i s t s (u m l P r o p e r t y : <
UMLProperty> | i d l F i e l d . i d e n t i f i e r = u m l P r o p e r t y .
i d e n t i f i e r and i d l F i e l d . t y p e = u m l P r o p e r t y . t y p e)))

CR 3 A property defined as a collection in a UML interface
must be implemented as a Set in the source code.

c o n t e x t UML i n t e r f a c e inv :
s e l f . l i n k e d S o u r c e C o d e . t r a c e s −> f o r A l l (s o u r c e C o d e C l a s s : <

SourceCodeClass> | s e l f . o w n e d P r o p e r t i e s −> f o r A l l (
u m l P r o p e r t y : <UMLProperty> | s o u r c e C o d e C l a s s . f i e l d s −>

e x i s t s (f i e l d : <F i e l d> | u m l P r o p e r t y . t y p e = ’
C o l l e c t i o n ’ and u m l P r o p e r t y . name = f i e l d . name i m p l i e s
f i e l d . t y p e = ’ Set ’)))

The Preparation only needs to be performed once per tool,
being less intrusive as possible.

2) Consistency Checking: The consistency checking ap-
plied by our approach is incremental, thus not necessarily all
model elements are checked every time the consistency check-
ing is triggered. More specifically, the consistency checking
(Step B3 in Figure 4) can be triggered by two actions: i)
when CRs are created, deleted, or modified (Step B1); or
ii) when the artifacts are changed (Step B2).

Define Consistency Rules: our approach applies CRs in
the artifacts connected to the DesignSpace server where the
consistency service is running. These rules can be created and
customized using the ARL language. In this approach, we
already provide some rules that aim at addressing the Issues
discussed in Section II. One example of a rule is CR1, which
checks all UML interfaces of a UML model. Another example
of CR provided with the approach is CR2. This rule checks
for inconsistencies considering the fields of IDL messages
and UML interfaces. This addresses the must be consistent
relationship between these two artifacts, illustrated in Figure 2.
The definition of additional CRs is possible by using our
ARL language documentation. Engineers define the CRs by
choosing a context (model element type) and the definition
in ARL as a String. This information is provided in the tools
used, such as Visio, and added to the DesignSpace server.
Once the CRs are added to the server, the consistency checking
mechanism will use them whenever Step B3 is triggered.

Another example of CR applied to the artifacts is described
in CR3. This CR checks if, for a given property of a UML
interface of the type Collection, there is a corresponding field
in the source code with the same name and of the type
Set. Here, the CR is checking the consistency between the
source code and UML. A similar rule can also check the
same type of consistency between the source code and the
IDL messages. The only difference is the context of the rule
and minor modifications to address the IDL message structure.
The approach provides flexibility to the consistency checking

by allowing engineers to create, delete, modify, enable and
disable CRs at runtime.

Change Artifacts: the consistency checking service listens
for changes in the artifacts analyzing if the model element
changed is part of any CRs’ context. For instance, CR1, CR2,
and CR3 have the context of UML interfaces. Thus, if a UML
interface is modified, this change triggers the consistency
checking service to start evaluating CR1, CR2, and CR3 for
this interface. Note that only the rules that have UML interface
as context are evaluated (or re-evaluated). However, changing
a UML property also changes the UML interface, depending
on the operation performed. For example, if the property is
deleted, then the UML interface will have fewer properties,
triggering the consistency checking service.

Perform Consistency Checking: once the consistency
checking is triggered, either by Steps B1 or B2, the model
elements that are in the context of the CRs are evaluated.
To describe how consistency checking is applied to CRs, we
can consider CR2. If the service was triggered by Step B1,
CR2 is applied to all model elements of its context, UML
interface (Context in CR2), creating CREs. If the service was
triggered by Step B2, however, only model elements that
were changed and are in the context of the rule are evaluated.
Continuing on the definition of CR2, the consistency check-
ing service accesses the property “linkedIDLMessages.traces”
from each UML interface. This property contains a collection
with all trace links created between UML classes and IDL
messages (Step A2). The CRs’ definition in ARL is parsed
using a compiler that calls functions for each one of the ARL
expression types present in the CR. For instance, in CR2 the
forAll iterator is used to check if, for all fields of an IDL
message in that trace link, there is at least one UML property
(exists iterator) corresponding to the IDL field. This is
performed by two equals (=) expressions “idlField.identifier =
umlProperty.identifier” and “idlField.type = umlProperty.type”
connected by an and conjunction. Thus, the functions called
by the parser correspond to the forAll, exists, and to
the and conjunction with the two equals expressions. The
approach structures the evaluation of a CR as a tree where,
in this case, the forAll expression would be the parent
of the exists expression which is the parent of the and
conjunction. The calculation of the CRE also considers this
tree structure, i.e., the results of the leaf nodes and the parent
nodes are combined. For example, a forAll expression needs
all the child nodes to be consistent. If the CRE of all child
nodes results in true, there are no inconsistencies in the given
UML interface. If the result of any child node is false, the
parent node is also false due to the forAll logic.

Once the consistency checking is finished, feedback is given
to the engineer (Step B3 in Figure 4). Figure 6 illustrates
an example of the feedback given in Visio. The consistency
feedback in the tool is given as a comment added to the
inconsistent element, in this case, the Obstacle interface.
Furthermore, the tool changes the color of the inconsistent
element (by default the inconsistent element is changed to red,
but the engineer can customize that).

Fig. 6: Excerpt of Visio showing the consistency feedback as
a comment.

Fig. 7: Excerpt of IntelliJ showing the consistency feedback
as a warning.

Figure 7 shows an example of the feedback given as a
warning in IntelliJ IDEA. The engineer can also customize
how the feedback is given, e.g., underlining, an error message,
or a warning.4 The approach proposed can be applied as the
solution for the industrial scenario presented in Section II.
Our approach, however, can be extended to be applied in
different scenarios where different tools are used. We discuss
and demonstrate this in the next section.

IV. EVALUATION OF THE APPROACH

In this section, we describe how the proposed approach is
applied in the industrial scenario. We also present and discuss
a scalability evaluation.

A. Application to Industrial Scenario

Addressing the Issues: rules such as CR1 and CR2 are de-
signed and provided to the industry partner to address Issues 1
and 2. The application of these rules by our approach can be
used to automatically detect inconsistencies in their context,
increasing the awareness of engineers about the consistency
of the artifacts. Furthermore, additional CRs are applied to
check if the IDL messages have trace links to the UML
interfaces since all IDL messages must be represented as
UML interfaces, and vice-versa (CRs 7 and 8).5 These rules
are not detailed in this paper, for the sake of simplicity. In

4Video demos for the tools are available at our online repository [19].
5All CRs applied to the industrial scenario are available in our reposi-

tory [19].

addition, CR3 is defined to address Issue 3 as we aim at
giving a customizable mechanism for engineers. Hence, the
tool adapters that we developed for the tools allow engineers
to edit the CRs at runtime. CR3, for instance, could be
customized to check if the field is implemented as List.
Furthermore, the tool adapters also allow engineers to have two
or more CRs with similar scopes, e.g., one CR for checking
if the collection is implemented as a Set and another CR
for checking if the collection is implemented as a List. The
tool adapters also allow engineers to enable and disable CRs
at runtime enhancing the customization of the consistency
checking service.

Addressing the requirements: transforming artifacts of dif-
ferent types into a unique representation allows the approach to
use the same checking service independently of the domain.
The only requirement is to apply a transformation from the
original format, e.g., Java, into the unique representation. To
do this, we implement tool adapters as plugins in the tools
that create these artifacts. By applying this strategy, we can
easily apply our approach to tools that are already used by
the industry partner, addressing their requirement for a non-
intrusive approach. Furthermore, the unique representation
allows us to extend the applicability of the approach to any
tool that supports a property/value relationship between model
elements. It is important, however, to check the scalability of
the approach as it may be required to apply it in projects larger
than the one from our industrial partner.

B. Scalability of the approach

We aim at investigating the scalability of the trace and con-
sistency checking services by applying our approach to large
systems. Since the system from the industry partner cannot be
presented in detail due to a confidentiality agreement, we do
not use it in this evaluation.

Evaluation design: we evaluate our approach’s scalability
by considering three Research Questions (RQ):

RQ1. To what extent is our approach scalable, considering
the number of CREs and inconsistencies that can be
identified?

RQ2. What is the time required for applying the consistency
checking and trace services?

RQ3. How does the approach react to changes performed
in the artifacts connected?

To answer the RQs, we selected six real systems imple-
mented in Java. These systems are shown in Table I and have
been used for evaluating related work [20], [21]. Three of these
systems (S1, S2, and S3) already possessed UML models.
This is required for evaluating the trace service considering
different model types. For the other three systems (S4, S5,
and S6) we reverse-engineered the source code to generate
the UML models. The reverse engineering was performed
using Modelio.6 We applied the consistency checking and trace
services using a bidirectional strategy.

6Modelio (https://www.modelio.org/).

TABLE I: Systems used in the scalability evaluation.

Id Name # elements # CREs # incons.
Java UML Total

S1 VOD3 15386 1706 17092 13061 8304
S2 BiterRobocupC. 15588 2628 18216 15033 8334
S3 ObstacleRace 18051 3216 21267 16034 10824
S4 Gantt 11281 9780 21061 10175 2208
S5 BankApp. 4185 3428 7613 3609 812
S6 TaxiSystem 3969 4231 8200 3943 1283

We applied 28 CRs in the systems, where 14 CRs checked
if Java source code was consistent with the UML models and
14 CRs checked if the UML models were consistent with the
source code. These CRs were defined based on standard UML
and Java constraint-based mechanisms [?], [4]. Collecting the
data about the number of CREs and inconsistencies identified
in these systems is used to answer RQ1. We also measure
the runtime required for performing these tasks, including the
creation of traces (RQ2).

Furthermore, to collect data to answer RQ3, we simulated
engineer’s changes based on common refactoring changes ap-
plied in real systems [22]–[24]. More specifically, we applied
nine different types of changes for Java source code: Extract
Method, Move Method, Rename Method, Delete Method, Re-
name Field, Move Field, Delete Field, Rename Class, and
Delete Class. We also applied nine types of changes for the
UML models: Extract Operation, Move Operation, Rename
Operation, Delete Operation, Rename Property, Move Prop-
erty, Delete Property, Rename UML Class, and Delete UML
Class. For each change type, we applied 100 changes in
100 random model elements (one change per model element)
for each system. This distribution resulted in 1,800 changes
performed for each system. After the execution of each change,
we collected the data related to the CREs evaluated, inconsis-
tencies created and runtime required.

The specifications for the execution environment are an Intel
Core i7-7700 CPU @3.6GHz with 16GB RAM (8GB available
for the DesignSpace server) and Windows 10 x64-based. The
evaluation data, Java source code, UML models, as well as
the CRs used, are available at our online repository [19].

Answering the RQs: Table I shows that the size of the
systems (# elements) ranges from 7,613 (S5) to 21,267 (S3)
in total, being from 3,969 to 18,051 considering Java elements
and from 3,428 to 9,780 considering UML elements. Consid-
ering the results about CREs and inconsistencies found per
system (see Table I), the approach created from 3,609 (S5)
to 16,034 CREs (S3). This led to the identification of several
inconsistencies ranging from 812 (S5) to 10,824 (S3). We also
consider the results of CREs and inconsistencies generated per
each CR applied, illustrated in Figure 8. Most CRs generated
less than 2,600 CREs for all systems, with two exceptions
being CR3B and CR9B [19]. Firstly, CR3B checks if all
methods in a Java class have trace links to the corresponding
UML operations. Secondly, CR9B checks if the return type of
the Java method matches the return type of the corresponding
UML operation.

https://www.modelio.org/

CR
1A

CR
1B

CR
2A

CR
2B

CR
3A

CR
3B

CR
4A

CR
4B

CR
5A

CR
5B

CR
6A

CR
6B

CR
7A

CR
7B

CR
8A

CR
8B

CR
9A

CR
9B

CR
10

A
CR

10
B

CR
11

A
CR

11
B

CR
12

A
CR

12
B

CR
13

A
CR

13
B

CR
14

A
CR

14
B

Consistency Rules

0

2500

5000

7500

10000

12500

15000

17500
To

ta
l

Number of
CREs
Inconsistencies

Fig. 8: CREs and inconsistencies per CR.

Since the number of methods in the systems was always
larger than the number of classes or fields (the other two
types of elements evaluated by CRs), it was expected that
the number of CREs for CRs checking methods would be
higher. Considering these results, we argue that the consistency
checking service is scalable, as it can be applied in large
systems to create CREs and identify several inconsistencies
(RQ1).

Furthermore, the result regarding the number of inconsis-
tencies of some CRs (Figure 8) is directly impacted by the
number of traces generated or missing. Considering CR3B,
for instance, if a trace between a Java method and a UML
operation is not created by the trace service, that method is
considered inconsistent. Table II shows the results regarding
the number of traces generated between Java classes, methods,
and fields to UML classes, operations, and properties, respec-
tively. Column # elements shows the number of elements that
were considered for the trace service, namely java classes,
methods, and fields. We only considered these elements, as
the CRs applied were also designed for the context of these
elements. However, other elements from the systems were
also analyzed by the consistency service by using the traces.
For instance, rules CR10A/CR10B (see [19]) check if the
parameters of a method are the same in both source code and
models, respectively. Since we have the traces of the methods,
we can access their parameters, avoiding the need to create
traces between parameters.

Table II also shows the number and percentage of traces
generated from the elements considered (Column # traces).
For the three systems that were not reverse-engineered (S1,
S2, and S3), the trace service generated between 11% and
28% traces between elements. By applying the CRs that
check for traces, however, we can identify the elements for
which the traces were not generated. These traces can be
created manually by an engineer. These tasks are related to the
A.Preparation (Figure 4) and only need to be performed
once for each tool. Furthermore, the traces created for S4, S5,
and S6 did not cover 100% of the elements used.

TABLE II: Summary of results of applying the trace service.

System # elements # traces (%) Time (ms) Avg. time (ms)
S1 2989 617 (20) 519.97 0.17
S2 3230 909 (28) 484.54 0.15
S3 3708 411 (11) 634.48 0.17
S4 1589 1447 (91) 481.34 0.3
S5 527 490 (92) 109.03 0.21
S6 392 387 (98) 98.04 0.25

elements: java classes, methods, and fields

7613 8200 17092 18216 21061 21267
System's Size (number of model elements)

50

100

150

200

CR
Es

 c
re

at
io

n
tim

e
(

s)

Systems
S1
S2
S3
S4
S5
S6

Fig. 9: Time required for creating CREs per system.

The results considering the number of traces for S4, S5, and
S6 is the main reason why these systems also presented several
inconsistencies (Table I), although their UML models were
created by reverse engineering the source code. Considering
these results, we argue that the trace service is scalable (RQ1)
as it can be applied in large systems to generate traces. There
is, however, a limitation with the strategy of generating traces
based on naming, requiring additional effort from engineers.

Figure 9 shows the results related to the runtime time (in
microseconds µs) that our approach takes to create a CRE per
system. The time stayed between 1 and less than 250 µs (0.25
milliseconds) per system. The median, for all systems, stayed
below 100 µs. Considering the results from Table I, S3 was
the system with the most CREs created (16,034). The worst
time for evaluating a CRE in S3 was 76.06 µs. This means,
that the runtime for evaluating the whole S3 system, in the
worst case, would be around 1,219,546.04 µs or 1.21 seconds.
Thus, we argue that the runtime results are satisfactory as,
even for evaluating the whole system, the required runtime is
acceptable. Furthermore, the runtime for generating all traces
for S3 was 634.48 ms (0.63 seconds), averaging 0.3 ms per
trace (Table II). Hence, our approach can be applied within a
reasonable amount of time (RQ2).

Figure 10 shows the results related to the average number
of CREs and inconsistencies created by each change type
applied per system (RQ3). Two change types (Delete UML
Class and Extract Operation) are not displayed in the figure,
as they led to zero CREs being created. Furthermore, the CREs
created per change, on average, present little impact on the
performance of the approach. This is supported by the average
runtime for creating each CRE per change (Figure 11).

Mo
ve

Me
th

od
Ex

tra
ct

Me
th

od
Re

na
m

eM
et

ho
d

De
le

te
Me

th
od

Re
na

m
eF

ie
ld

Mo
ve

Fie
ld

De
le

te
Fie

ld
Re

na
m

eC
la

ss
De

le
te

Cl
as

s
Mo

ve
Op

er
at

io
n

Re
na

m
eO

pe
ra

tio
n

De
le

te
Op

er
at

io
n

Re
na

m
eP

ro
pe

rty
Mo

ve
Pr

op
er

ty
De

le
te

Pr
op

er
ty

Re
na

m
eU

ML
Cl

as
s

Change Type

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Avg. Number of
CREs
Inconsistencies

Fig. 10: CREs and inconsistencies per change type.

Mo
ve

Me
th

od
Ex

tra
ct

Me
th

od
Re

na
m

eM
et

ho
d

De
le

te
Me

th
od

Re
na

m
eF

ie
ld

Mo
ve

Fie
ld

De
le

te
Fie

ld
Re

na
m

eC
la

ss
De

le
te

Cl
as

s
Mo

ve
Op

er
at

io
n

Re
na

m
eO

pe
ra

tio
n

De
le

te
Op

er
at

io
n

Re
na

m
eP

ro
pe

rty
Mo

ve
Pr

op
er

ty
De

le
te

Pr
op

er
ty

Re
na

m
eU

ML
Cl

as
s

Change Type

0

50

100

150

200

CR
Es

 c
re

at
io

n
tim

e
(

s)

Fig. 11: Time required for creating CREs per change type.

Figure 11 shows that the runtime required to create each
CRE per change stayed between 1 and 250 µs with the median
staying below 50 µs for all change types. This implies that,
in the worst case, considering the number of CREs created,
the Move Property change creates 3 CREs on average and
takes at most 250 µs per CRE, totalizing 750 µs, i.e, 0.75 ms.
Hence, our approach can react to changes performed in the
artifacts, re-evaluating the CRs affected by the changes within
a reasonable amount of time (RQ3).

The results of the scalability evaluation demonstrate that
our approach may be applied in other contexts, besides the
industrial scenario from our partner. Furthermore, we could
also identify limitations in the approach that must be addressed
in the future.

Threats to the validity of the scalability evaluation: the
selection of the systems used in the evaluation may be an
internal threat. For mitigating this threat, we selected real
systems from open-source projects. This resulted in a total
of 61,855 of CREs created, aggregating to a total amount of

31.765 inconsistencies. These numbers show that the systems
used are varied enough for supporting our findings. Another
threat is the CRs used, as inconsistencies are found based
on these rules. To mitigate this threat, we defined a varied
set of rules with different sizes and expression types that
evaluate different contexts [19]. We created these rules based
on standard UML and Java consistency mechanisms [?], [4].
The results regarding the number of evaluations per system
support our claim that this threat was mitigated as around
50% of the model elements were evaluated per system. This
shows the variety of CRs, as they were not only checking the
consistency of a small set of model elements per system.

An external threat is related to the generalization of our
results to other domains. In this evaluation, we used Java
source code and UML models, so we only have evidence to
support the scalability of our approach with these types of arti-
facts. Our approach, however, was also applied in the scenario
provided by the industry partner. In this scenario, a different
set of CRs, artifacts, and traces are created. Furthermore, the
trace and consistency checking services used for the Java/UML
consistency checking are the same as applied to the Visio, IDL,
and source code checking in the industrial scenario.

A conclusion threat is related to the changes considered for
RQ3 data collection. To simulate changes that may be applied
by real engineers, we define the type of changes based on the
most used refactoring actions applied in source code [22]–
[24]. Since these are changes created synthetically, they may
still not reflect real changes created by engineers. However,
the changes were created to observe how our approach reacts
to them. So, although synthetic, the changes provided us with
the data required to answer RQ3 (number of CREs created
and runtime).

C. Limitations and Future Work

Challenges of extending the approach: there are limita-
tions in connecting artifacts from different domains to a single
server such as DesignSpace. Since different tools use different
metamodels, e.g, UML classes have “operations” while Java
classes have “methods”, applying the same consistency check-
ing service in different artifacts is challenging. Thus, once the
connection is performed, the artifacts from the engineering
tools have to be transformed using the unique representation
depicted in Figure 3. This transformation is performed to
guarantee that artifacts of different types, e.g., Java and UML,
can be checked using the same consistency checking service.
This transformation, however, may lead to important data from
the original artifact being lost due to the limitation of the
unique representation. Data loss is a common problem of
cross-domain solutions that may lead to consistency checking
not being performed correctly [2].

When designing the tool adapters, we have to carefully
analyze the data required for the trace and consistency services
to work properly. Furthermore, adapters of tools that allow
the creation of different types of artifacts may not work for
all artifacts created by these tools. The Visio tool adapter, for
instance, was designed to send information about all shapes

from Visio. However, the parser used to transform these shapes
into a unique representation considers only UML models and
their structure. This means that if another kind of shape is used,
e.g., a BPMN shape, the parser will not be able to transform
it into the unique representation used by DesignSpace. Other
tools, such as Papyrus UML, rely on the use of the well-
defined Eclipse Modeling Framework (EMF) [25] that is used
for all artifacts created using that tool. In this case, we can
parse any artifact of that tool to our unique representation,
as long as we follow the EMF structure. Hence, for some
tools, tool adapters have to be developed in a domain-specific
manner not being applied in all artifacts of that tool. This
is an open challenge in our research that will be further
explored in future work. We do, however, have applied similar
approaches for consistency checking in a variety of different
artifacts, showing the potential extensibility of the unique
representation [15], [26], [27].

Another challenge is related to the effort and costs of
deploying the approach in different industrial scenarios. The
varied number of artifacts, engineers, and tools being used
in projects can have a direct impact on the cost/effort of
applying the approach. Moreover, the larger the project, the
more resources need to be available for the DesignSpace
server to run the services. A possible strategy to address
this challenge is to implement a decentralized solution as a
microservice architecture. Evaluating the impact of having this
type of architecture, however, remains a future work.

Consistency checking is only the first step: once incon-
sistencies are found in the artifacts, they need to be repaired.
The approach presented in this work does not directly pro-
vide repairs to engineers. It does, however, provide guidance
on how to repair inconsistencies by providing consistency
feedback. With this feedback, engineers can reason about
the inconsistencies that should be fixed. The generation of
repairs based on CRs has been explored in the literature [16],
[28]–[31]. These approaches, however, focus on generating
repairs for single artifact types, e.g., UML. We plan to extend
our current approach to provide repair generation based on
these repair approaches. The generation of repairs should be
customizable, similar to how the consistency checking is,
by providing rules to filter out repairs not desired by the
engineers. For instance, filtering our repairs that affect the
Visio models and keeping only repairs that affect the IDL
messages.

V. RELATED WORK

In this section, we present work related to our research.
Unique representation: while designing the unique represen-
tation, we considered using EMF [25], [32], more specifically
Ecore, as a basis for collaborative modeling. We decided to
abandon this concept in favor of a typed, more lightweight,
uniform artifact representation not tied to the Ecore/Eclipse
framework. The main reason for not applying Ecore is to sim-
plify the model representation, including only properties that
would be needed for the communication between engineering
tools, tool adapters, and the DesignSpace server. Moreover,

the use of Ecore would lead our representation to contain
properties and elements that are not necessarily useful for our
services. Another reason for creating our own representation
is the possibility to extend it based on the requirements related
to the services running on the DesignSpace server for different
types of artifacts and tools.

Consistency checking considering different types of arti-
facts: consistency checking has been applied in artifacts of
different domains, with a focus on models [2], [5], [16], [33]–
[36]. Furthermore, consistency checking can be performed
with different strategies such as applying patterns, relying on
ontology, or using constraints in form of CRs [2]. In our
approach, we rely on the definition and execution of CRs.
In this sense, CRs can be defined using different languages.
Studies focusing on UML consistency checking were able
to identify how 94 primary sources define CRs [?], [1], [2].
The results show that plain English was used in 29% of the
approaches and OCL in 21%, the second most adopted. They
also identified the type of diagram most used for consistency
checking, being class diagram (67%) the most used, and
sequence diagram (45%) the second most used. Although in
this paper, the CRs used for the scalability evaluation focused
on class diagrams, our approach can be applied in any UML
diagram based on the context of the CRs defined.

The review by Torres et al. [2] identified and analyzed 80
different consistency checking tools. Their findings, however,
showed that only 32 tools (40%) provided consistency check-
ing for more than one type of model. Another limitation is
related to the strategies applied to keep artifacts of different
domains consistent. They report that most approaches are not
mature, may cause data loss, and only work for specific tools.
To address these limitations, our work has used trace links to
connect artifacts of different tools into a single central consis-
tency checking service. By applying our unique representation,
we can transform artifacts into equivalent models and perform
consistency checking on them.

Other systematic studies have discussed the importance and
applicability of consistency checking in design models, such
as UML [4]. The authors also discussed the lack of vertical
consistency checking in most approaches. Vertical consis-
tency checking is related to how our approach may perform
bidirectional consistency checking, for instance, checking for
traces between both UML and IDL, and then checking for
their properties and fields. Most approaches would only check
for them individually, e.g., only looking at the UML. As
discussed previously, this may reduce the flexibility of the
consistency checking and may not conform to the engineer’s
preferences. Hence, our approach addresses this problem by
allowing bidirectional consistency checking across multiple
tools. This strategy is novel compared to the majority of
consistency checking approaches [5], [33]–[36]. There are,
however, several approaches describing the consistency check-
ing between source code and models, as described next.

Consistency checking between source code and models:
several approaches address this topic using different strate-

gies [37]–[47]. Kaliappan et al. [36] present an approach that
guides engineers to maintain design models consistent, by
checking their differences with the source code implemented
in C#. They apply their approach in three types of UML dia-
grams, namely, class, use case, and sequence. Their approach,
however, is limited to the traditional way that CRs are applied,
without customization possibilities. Khelladi et al. [10], [35]
apply the use of change propagation, evolving source code
based on changes found in metamodels related to the code.
Although their approach does not apply CRs, their goal is
to keep source code and models consistent by maintaining
them synchronized. Their approach is implemented into a
prototype that supports EMF models and Java source code.
In comparison to our work, as their approach does not use
CRs, it provides fewer customization options regarding how
inconsistencies should be found.

The lack of customization options is a limitation in ap-
proaches that rely on the automatic generation of code from
models, or models from code [48]–[50]. Automated code
generation usually requires additional configuration and steps
that may be too intrusive to the scenario from our industry
partner. Furthermore, applying code generation would impact
the results related to Issue 3, since the flexibility of the
approach would be reduced. This could lead the solution to
disrupt the current development life-cycle, going against the
requirements of the industry partner. Another aspect where
automatic generation may struggle is dealing with ambiguity
when generating artifacts. This ambiguity problem (Issue 3)
needs to be addressed as it may lead to wrong code/models be-
ing generated. Allowing the customization of the consistency
checking mechanism considering different tools and CRs is a
novel aspect of our study in comparison to the aforementioned
approaches.

VI. CONCLUSION

In this study, we present an approach designed to solve
issues and requirements from an industrial scenario of a com-
pany that develops agricultural machines. Our solution was
developed in collaboration with Flanders Make and provides
consistency checking and trace services that can be applied
to maintain consistency across engineering artifacts from
different tools. We demonstrate how the approach addresses
the issues in the industrial scenario, also presenting results
of an empirical evaluation considering the scalability of the
approach. Future directions and limitations are also discussed,
such as extending the approach to different domains and
providing repairs for the inconsistencies identified.

VII. DATA AVAILABILITY

The evaluation’s artifacts as well as demo videos of the
approach are available in an online repository [19].

ACKNOWLEDGEMENTS

The research reported in this paper has been partly funded
by the Austrian Science Fund (FWF) (grant #P31989-N31
as well as grant #I4744-N) and by the Austrian COMET

K1-Centre Pro2Future of the Austrian Research Promotion
Agency (FFG) with funding from the Austrian ministries
BMVIT and BMDW. The research reported on in this paper
has been tested using a use case related to privately funded
research done by Flanders Make vzw, the Flemish strategic
research center for the manufacturing industry.

REFERENCES

[1] D. Torre, M. Genero, Y. Labiche, and M. Elaasar, “How consistency
is handled in model driven software engineering and uml: a survey of
experts in academia and industry,” Carleton University, Tech. Rep., 2018.

[2] W. Torres, M. G. Van den Brand, and A. Serebrenik, “A systematic
literature review of cross-domain model consistency checking by model
management tools,” Software and Systems Modeling, pp. 1–20, 2020.

[3] D. Torre, M. Genero, Y. Labiche, and M. Elaasar, “How consistency
is handled in model-driven software engineering and uml: an expert
opinion survey,” Software Quality Journal, pp. 1–54, 2022.

[4] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of uml
model consistency management,” Information and Software Technology,
vol. 51, no. 12, pp. 1631–1645, 2009, quality of UML Models.

[5] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit: a
consistency checking and smart link generation service.” ACM Trans.
Internet Techn., vol. 2, no. 2, pp. 151–185, 2002.

[6] A. Egyed, “Instant Consistency Checking for the UML,” in 28th Interna-
tional Conference on Software Engineering, ser. ICSE ’06. New York,
NY, USA: Association for Computing Machinery, 2006, pp. 381–390.

[7] ——, “Automatically detecting and tracking inconsistencies in software
design models,” IEEE Transactions on Software Engineering, vol. 37,
no. 2, pp. 188–204, 2011.

[8] A. Reder and A. Egyed, “Incremental Consistency Checking for Com-
plex Design Rules and Larger Model Changes.” in MoDELS, ser. Lecture
Notes in Computer Science, R. B. France, J. Kazmeier, R. Breu, and
C. Atkinson, Eds., vol. 7590. Springer, 2012, pp. 202–218.

[9] M. Riedl-Ehrenleitner, A. Demuth, and A. Egyed, “Towards model-
and-code consistency checking,” in Annual Computer Software and
Applications Conference, 2014, pp. 85–90.

[10] D. E. Khelladi, B. Combemale, M. Acher, and O. Barais, “On the
power of abstraction: A model-driven co-evolution approach of software
code,” in International Conference on Software Engineering: New Ideas
and Emerging Results, ser. ICSE-NIER ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 85–88.

[11] M. A. Tröls, L. Marchezan, A. Mashkoor, and A. Egyed, “Instant and
global consistency checking during collaborative engineering,” Software
and Systems Modeling, pp. 1–27, 2022.

[12] R. Jongeling, “How to Live with Inconsistencies in Industrial Model-
Based Development Practice,” in International Conference on Model
Driven Engineering Languages and Systems Companion, 2019, pp. 642–
647.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[14] OMG, “IDL Specification,” https://www.omg.org/spec/IDL/, 2018.
[15] L. Marchezan, W. K. G. Assunção, G. Michelon, E. Herac, and

A. Egyed, “Code smell analysis in cloned java variants: The apo-
games case study,” in International Systems and Software Product
Line Conference - Volume A, ser. SPLC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 250–254.

[16] L. Marchezan, R. Kretschmer, W. K. Assunção, A. Reder, and A. Egyed,
“Generating repairs for inconsistent models,” Software and Systems
Modeling, pp. 1–33, 2022.

[17] OMG, “OCL Specification,” http://www.omg.org/spec/OCL/, 2014.
[18] A. Demuth, M. Riedl-Ehrenleitner, A. Nöhrer, P. Hehenberger, K. Ze-

man, and A. Egyed, “Designspace: An infrastructure for multi-
user/multi-tool engineering,” in Symposium on Applied Computing, ser.
SAC ’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 1486–1491.

[19] L. Marchezan, W. K. G. Assunção, E. Herac, F. Keplinger, A. Egyed,
and C. Lauwerys, “Fulfilling Industrial Needs for Consistency Among
Engineering Artifacts - Evaluation Data,” Oct. 2022. [Online]. Available:
https://zenodo.org/record/7197600#.ZFuhw3ZByUk

https://zenodo.org/record/7197600#.ZFuhw3ZByUk

[20] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2010.

[21] A. AbuHassan, M. Alshayeb, and L. Ghouti, “Software smell detection
techniques: A systematic literature review,” Journal of Software: Evolu-
tion and Process, vol. 33, no. 3, p. e2320, 2021.

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, 2012.

[23] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Confes-
sions of GitHub contributors,” in International Symposium on Founda-
tions of Software Engineering, 2016, pp. 858–870.

[24] M. Paixão, A. Uchôa, A. C. Bibiano, D. Oliveira, A. Garcia, J. Krinke,
and E. Arvonio, Behind the Intents: An In-Depth Empirical Study on
Software Refactoring in Modern Code Review. ACM, 2020, p. 125–136.

[25] M. Koegel and J. Helming, “EMFStore: a model repository for EMF
models,” in International Conference on Software Engineering-Volume
2. ACM, 2010, pp. 307–308.

[26] C. Mayr-Dorn, R. Kretschmer, A. Egyed, R. Heradio, and D. Fernandez-
Amoros, “Inconsistency-tolerating guidance for software engineering
processes,” in International Conference on Software Engineering: New
Ideas and Emerging Results, 2021, pp. 6–10.

[27] A. Demuth, R. Kretschmer, A. Egyed, and D. Maes, “Introducing
traceability and consistency checking for change impact analysis across
engineering tools in an automation solution company: An experience
report,” in International Conference on Software Maintenance and
Evolution, 2016, pp. 529–538.

[28] R. Kretschmer, D. E. Khelladi, and A. Egyed, “Transforming abstract
to concrete repairs with a generative approach of repair values,” Journal
of Systems and Software, vol. 175, p. 110889, 2021.

[29] L. Marchezan, W. K. G. Assuncao, R. Kretschmer, and A. Egyed,
“Change-oriented repair propagation,” in International Conference on
Software and System Processes and International Conference on Global
Software Engineering, ser. ICSSP’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 82–92.

[30] A. Barriga, A. Rutle, and R. Heldal, “Personalized and automatic model
repairing using reinforcement learning,” in International Conference on
Model Driven Engineering Languages and Systems Companion, 2019,
pp. 175–181.

[31] M. Ohrndorf, C. Pietsch, U. Kelter, and T. Kehrer, “ReVision: A Tool for
History-Based Model Repair Recommendations,” in 40th International
Conference on Software Engineering: Companion Proceeedings, ser.
ICSE ’18. New York, NY, USA: Association for Computing Machinery,
2018, pp. 105–108.

[32] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[33] M. A. Tröls, A. Mashkoor, and A. Egyed, “Timestamp-based consis-
tency checking of collaboratively developed engineering artifacts,” in
International Conference on Software and System Processes, 2021.

[34] C. Nentwich, W. Emmerich, and A. Finkelsteiin, “Consistency man-
agement with repair actions,” in International Conference on Software
Engineering, ser. ICSE ’03. IEEE, 2003, pp. 455–464.

[35] D. E. Khelladi, B. Combemale, M. Acher, O. Barais, and J.-M. Jézéquel,
“Co-evolving code with evolving metamodels,” in International Confer-
ence on Software Engineering. ACM, 2020, p. 1496–1508.

[36] V. Kaliappan and N. M. Ali, “Improving consistency of uml diagrams
and its implementation using reverse engineering approach,” Bulletin
of Electrical Engineering and Informatics, vol. 7, no. 4, pp. 665–672,
2018.

[37] J. Adersberger and M. Philippsen, “Reflexml: Uml-based architecture-
to-code traceability and consistency checking,” in European Conference
on Software Architecture. Springer, 2011, pp. 344–359.

[38] Z. Diskin, Y. Xiong, and K. Czarnecki, “Specifying overlaps of het-
erogeneous models for global consistency checking,” in International
Workshop on Model-Driven Interoperability, ser. MDI ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 42–51.

[39] J. Lenhard, M. Blom, and S. Herold, “Exploring the suitability of source
code metrics for indicating architectural inconsistencies,” Software Qual-
ity Journal, vol. 27, no. 1, pp. 241–274, 2019.

[40] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
bridging the gap between design and implementation,” IEEE Transac-
tions on Software Engineering, vol. 27, no. 4, pp. 364–380, 2001.

[41] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: a contract place
where architectural design and code meet together,” in International
Conference on Software Engineering, vol. 1, 2010, pp. 75–84.

[42] D. Cassou, E. Balland, C. Consel, and J. Lawall, “Leveraging software
architectures to guide and verify the development of sense/compute/con-
trol applications,” in International Conference on Software Engineering,
ser. ICSE ’11. ACM, 2011, p. 431–440.

[43] H. M. Chavez, W. Shen, R. B. France, B. A. Mechling, and G. Li, “An
approach to checking consistency between uml class model and its java
implementation,” IEEE Transactions on Software Engineering, vol. 42,
no. 4, pp. 322–344, 2016.

[44] Y. Zheng and R. N. Taylor, “Enhancing architecture-implementation
conformance with change management and support for behavioral
mapping,” in International Conference on Software Engineering, 2012,
pp. 628–638.

[45] R. Jongeling, J. Fredriksson, F. Ciccozzi, A. Cicchetti, and J. Carlson,
“Towards consistency checking between a system model and its imple-
mentation,” in Systems Modelling and Management, Ö. Babur, J. Denil,
and B. Vogel-Heuser, Eds. Cham: Springer International Publishing,
2020, pp. 30–39.

[46] R. Jongeling, A. Cicchetti, F. Ciccozzi, and J. Carlson, Towards Boosting
the OpenMBEE Platform with Model-Code Consistency. New York,
NY, USA: Association for Computing Machinery, 2020.

[47] M. Zaheri, M. Famelis, and E. Syriani, “Towards checking consistency-
breaking updates between models and generated artifacts,” in Interna-
tional Conference on Model Driven Engineering Languages and Systems
Companion, 2021, pp. 400–409.

[48] A. D. Durai, M. Ganesh, R. M. Mathew, and D. K. Anguraj, “A novel
approach with an extensive case study and experiment for automatic
code generation from the xmi schema of uml models,” The Journal of
Supercomputing, vol. 78, no. 6, pp. 7677–7699, 2022.

[49] W. Harrison, C. Barton, and M. Raghavachari, “Mapping uml designs
to java,” SIGPLAN Not., vol. 35, no. 10, p. 178–187, oct 2000.

[50] U. Sabir, F. Azam, S. U. Haq, M. W. Anwar, W. H. Butt, and A. Amjad,
“A model driven reverse engineering framework for generating high level
uml models from java source code,” IEEE Access, vol. 7, pp. 158 931–
158 950, 2019.

	Introduction
	Background
	Industrial Scenario
	Goals and Requirements

	Approach's Realization
	Approach's Unique Representation
	Approach's Workflow
	Preparation
	Consistency Checking

	Evaluation of the Approach
	Application to Industrial Scenario
	Scalability of the approach
	Limitations and Future Work

	Related Work
	Conclusion
	Data Availability
	References

